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SUMMARY 

A comprehensive study is presented regarding the numerical stability of the simple and common 
forward Euler explicit integration technique combined with some common finite difference spatial 
discretizations applied to the advection-difision equation. One-dimensional results are obtained using 
both the matrix method (for several boundary conditions) and the classical von Neumann method of 
stability analysis and arguments presented showing that the latter is generally to be preferred, 
regardless of the type of boundary conditions. The less-well-known Godunov-Ryabenkii theory is also 
applied for a particular (Robin) boundary condition. After verifying portions of the one-dimensional 
theory with some numerical results, the stabilities of the two- and three-dimensional equations are 
addressed using the von Neumann method and results presented in the form of a new stability theorem. 
Extension of a useful scheme from one dimension, where the pure advection limit is known variously as 
k i th’s  method or a Lax-Wendroff method, to many dimensions via finite elements is also addressed 
and some stability results presented. 

KEY WORDS Stability Advectiondfision von Neumann method Matrix method Explicit Euler 

1. INTRODUCTION 

In spite of its many concomitant problems, the simple explicit (forward) Euler method has 
been, and still is, widely used in computational fluid dynamics and related fields (e.g. air or 
water pollution). In this paper we study (as have many before us) certain aspects of an 
important and prototypical equation, the advection-diffusion equation, in 1, 2 and 3 
dimensions in an Eulerian reference frame. Specifically, we will examine the stability of 
certain finite difference approximate solutions to the advection-diffusion (or convection- 
diffusion) equation 

aQIat +u. vcp = v . (K . Vcp) (1) 

where cp is the transported (advected and diffused) dependent variable, u is the (constant) 
advecting velocity vector, and K is the (constant) diff usivity tensor. Of central importance 
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will be the discretization resulting from the simplest second-order centred spatial differencing 
and first-order forward temporal differencing (Euler), often called FTCS (forward time, 
centred space).’ For this case we will present a stability theorem based on the definition of 
stability which we believe to be most useful. The method is based on Fourier analysis in the 
manner of von Neumann and the results are well corroborated by actual computations. 

Part of the motivation for this study lies in our use of the explicit Euler method to 
integrate the ordinary differential equations (ODES) generated by the application of a 
(modified) Galerkin finite element method ( E M )  using multilinear basis functions to the 
conservation equations for mass, momentum (Navier-Stokes equations), and energy in 2 and 
3  dimension^.^^ This spatial discretization method generates a 9-point stencil in 2-D and a 
27-point stencil in 3-D, the complete stability analysis of which has thus far proved 
intractable. As a first step, however, we have been successful in analysing the stability of the 
simpler FTCS scheme, which uses only a 5-point stencil in 2-D and a 7-point stencil in 3-D. 

Another stimulus relates to the interesting history of stability predictions for this equation. 
Apparently beginning with Fromm’ who incorrectly analysed the von Neumann stability 
equation (modified, as defined in Section 2.2) for FTCS in 2-D, the error was promulgated 
(1-D and 2-D) in the popular book by Roache.’ The erroneous result, which places a severe 
restriction on the spatial discretization (i.e. the cell Reynolds (or Peclet) number cannot 
exceed unity) independently of the time-step size, would be a major deterrent to those 
interested in modelling advection-dominated flows by this method. Leonard6 appears to be 
the first to have detected this error, at least for the 1-D case, and his results (which are a 
special case of the multi-dimensional results reported herein) are correct. (Earlier, however, 
Hirt7 and Morton8 had also presented the correct 1-D results.) More recently the confusion 
has again surfaced, beginning with a paper by Siemieniuch and Gladwell’ hereafter referred 
to as S&G, in which they could not explain an important difference between their 
theoretical stability limits, obtained using a particular concept of stability which we call the 
matrix method, and their (1-D) numerical results-the latter were less stable than predicted 
by their theory. Another recent (2-D) attempt, this time using the Fourier method, was 
presented by Riga1.l’ Interestingly, he stated that the analytical work is ‘not difficult’, but 
‘somewhat tedious’; yet his results are, we believe, erroneous. In contrast, Mitchell and 
Griffiths’l called the full analysis ‘intractable’; unfortunately, however, an error in their 
ensuing simplified analysis resurrected a (2-D) cell Reynolds number constraint. Finally, the 
recent book by Lapidus and Pinder12 interestingly reports the wrong result in one place (p. 
187, ‘after tedious calculation’) and the correct one in another (p. 506). Considering these 
facts, and our own, thus far futile, attempts to complete the analysis for the more complex 
FEM discretization, it appears to us that the analytical work is indeed difficult. 

has responded to the S & G paper and, among other things, explained their 
numerical results; he also made the following cogent remark, with which we agree: 
‘Unfortunately most of the analysis was based on the so-called matrix method, and an 
associated concept of stability, which is misleading both in theory and practice for such 
problems.’ Griffiths et also reacted to the S & G paper, in a different way, which also 
explained their observations. They showed that the error in the (1-D) FTCS scheme can 
become arbitrarily large in finite time if the matrix stability results are employed, even 
though the error does return to zero as t + w .  Another recent (1-D) discovery of the 
‘cell-Reynolds number error’, and its correction, is given by Clancy,” who also presented 
supporting numerical results at large cell Reynolds number (-200). More recently, 
Griffiths16 has shown, again in 1-D, that the (correct) results from the modified von 
Neumann method (for a particular set of boundary conditions) actually preclude error 
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growth as a function of time-in marked contrast to the looser and less conservative stability 
limits often obtained using the matrix method. 

In the remainder of this paper we will analyse the stability of explicit Euler for several 
spatial discretization schemes (FTCS, a modified FTCS, and the simplest upwind scheme). 
The fundamental tool will be the von Neumann method, which 'ignores' boundary condi- 
tions, yet still. usually yields the best results (instability is usually generated far from 
boundaries). However, we will also analyse some schemes using the same matrix method 
employed by S & G, including several boundary conditions, and comment on the differences. 
To conclude the section on 1-D, we will present a discussion of the behaviour to be expected 
when a numerical simulation is performed in which the stability limits are exceeded, 
inadvertently or  otherwise. We believe that these results may be useful in interpreting certain 
anomalous behaviour when solving either non-linear or  variable-coefficient advection- 
diffusion or  even Navier-Stokes equations-they have been helpful to us. The remaining 
sections present the new results regarding the stability of FTCS and variants for both 2-D 
and 3-D, and some (partial) results for some finite element-based schemes. 

2. THE ONE-DIMENSIONAL CASE 

2.1. Preliminaries 

The advection-diffusion equation (1) in the 1-D case, in a bounded domain, can be written 
as follows: 

where K r O  and u are constant. The boundary conditions of interest initially (as in S & G) 
are cp(0, t )  = 1, cp,(l, t) = 0; the initial condition cp(x, 0) is arbitrary, but given. The semi- 
discretized, second-order accurate, centred-difference form of this problem on a mesh with 
Ax = 1/N is 

dcpj/dt =-~(cp~+l -cp~-~) /2A~  +K(cpi+l-2cpj +cpj-1)/Ax2, l S j S N  (3) 

with cpo= 1 and cpN+l=cpPN-l (the 'image point' method of approximating the derivative 
boundary condition). This has the form of a linear system of ordinary differential equations 
in y={cpj}El: 

y =dy/dt = Ay + b (4) 

where A is a tridiagonal matrix and the vector b has zero components except for 

bl = u/2Ax + K/Ax2 

Here, the eigenvalues of A all lie in the open left half plane (S & G) for K > 0. Hence, for 
any fixed N, the ODE system (4) is stable. For K = 0, the eigenvalues all lie on the imaginary 
axis and the ODE system is said to be weakly stable. 

Next, we form the forward difference (Euler) time discretization of (4) to obtain the FTCS 
scheme: 

where E=(I+AtA), and y'"'={cp~'} is the discrete approximation to y at time t,, = n At. 
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This recursion can easily be accumulated to give 

y(")  = E"y'o)+ ( E n  - I)A-lb (6) 

Thus the behaviour of the discrete solution depends entirely on the behaviour of powers of 
the tridiagonal matrix E. In particular, it is necessary that En + 0 as n + 00 if a steady state 
solution of (4) is to be obtained. In terms of 

the diffusion parameter, 
the Courant number (for u 2 0 ) ,  

and the grid Peclet number (for u 2 O), 

a = 2 K  At/Ax2 
c = u AtlAx 
P =- u Ax/2K = c ia 

the non-zero elements of E are (reading across rows): 

(a + c) /2  = a ( l  + P ) / 2 ,  1 -a, 

except for the last row, which has non-zero elements a, 1 - a ; in the above, 1 - a corre- 
sponds to the main diagonal. We will have need of these relations later. 

(a - c) /2  = a(l -P) /2  

2.2. The von Neumann and matrix methods of stability analysis 

Historically, two different notions of stability have been applied to difference schemes such 
as (5). One, due to von Neumann, is based on a Fourier mode analysis. The other is based on 
a spectral radius analysis of the amplification matrix E. The paper by gives an 
enlightening, and we believe valid, comparison of the two, with an argument in favour of the 
Fourier method. (There appears to be an inconsequential error in that paper: the eigenvalues 
of E are not always distinct, but all coalesce when P = 1 (Ah = 2 in his notation). Thus the 
diagonalization preceding equation (8) there does not hold in this particular case. This 
coalescence was also noted by Price et a1.l' and S&G.)  For detailed discussion on the 
concept of stability and on methods for its analysis, see Richtmeyer and Morton," hereafter 
referred to as R & M. 

The Fourier (or von Neumann) method applied to (5 )  consists of examining Fourier modes 
' P i  (n) = [neiikAx for appropriate wave numbers k and associated wavelengths, X = 2nll kl. 
( i  = J-1). Strictly speaking, this analysis applies only to the problem with periodic boundary 
conditions rather than those posed, or, equivalently, for the initial value problem on the 
infinite x-axis; we shall say more on this later. Also, when analysing any single Fourier 
mode, we ignore the initial conditions actually posed, as they will be met only by a complete 
Fourier series. On substituting the above Fourier mode into the interior difference equations, 
a value for the complex amplification factor 5 = (pjn+l)/(py) is determined. As a function of 
the phase angle 8 = k Ax,  it is, in this case, 

.$ = 1 - a (1 - cos 8) - ic sin 8 (7) 

Following the (practical) von Neumann stability requirement that we employ 
is, for the stable ODE systems of interest here, ( 6 )  51. This is referred to as the modified von 
Neumann stability condition since the original, weaker condition, 151 5 1 + O(At), often leads 
to unacceptably large errors (and would in this case'). For a thorough treatment of these 
issues, see R & M (p. 266) who originally introduced the stricter notion of 'practical stability 
conditions' based on the principle 'that no Fourier component of the approximation should 
be allowed to grow more rapidly than the most rapid possible growth of the exact solution'. 
Applied to the case of interest here, this leads to 151 5 1, since all modes of the exact solution 
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decay in time. Hereafter we will omit the adjectives ‘practical’ and ‘modified’ in the interest 
of brevity. 

The choice of wave numbers k also deserves some discussion. The given mesh actually 
supports only some finite discrete set, such as 

k = 27rn, n = no, no+ 1, .  . . , n o + N -  1 (8) 
where no is any integer. Convenient choices for no are (i) for N even, no = -N/2 (a 2Ax 
wave), and (ii) for N odd, no = -(N- 1)/2 (nearly a 2Ax wave; a 2Ax wave cannot be 
represented exactly on the mesh for N odd). In fact, however, any vector {eiikAx}~, (with k 
an arbitrary real number) can be written as a linear combination of the (basis) vectors 
corresponding to the finite set (size N) of k values in (8); i.e. all other frequencies are 
‘aliased’ to these, the only ones distinguishable on the mesh. Now the actual stability of the 
difference equations would require that 151 I 1 only for each of these discrete k values. But 
deriving conditions on At (in terms of the problem parameters) equivalent to this discrete 
maximum condition is usually much less tractable, and so the standard procedure is to 
impose the condition (51 I 1 for all real values of k, or equivalently for all 8, -IT I 8 I IT. This 
is therefore a slightly stricter condition than that required for any given finite N, but for large 
N the two conditions become essentially equivalent to within O(l/N2) in general. (See also 
Reference 19.) We will generally follow precedent (e.g., Reference 11) and continue to refer 
to the continuous k analysis as the von Neumann method. Finally we remark that the k = 0 
mode (a constant vector) makes no contribution to the stability (or otherwise) of the 
difference scheme, since then 5 = 1 for any At; 8 = 0 is always neutrally stable. 

In the case where 6 is given by (7), i.e. for FTCS, it can be s h o ~ n ~ ~ * ~ ~  that 161 I 1 for all 8 
is equivalent to the pair of inequalities 

c -  2 -=aI1  (9) 

These inequalities are necessary and sufficient for stability in the sense of von Neumann as 
defined above. This has the alternative equivalent forms 

and 
a l l  and a s 1 / P 2  

c s P s l / c ,  or CIP and c s l / P  

In terms of the physical parameters of the problem, the ‘diffusion limit’ (a 9 1) is At I 
Ax2/2K and the ‘advection-difision’ limit (c2 I a) is At I 2K/u2. The former is limiting 
when P < 1 and the latter governs when P L 1; in both cases c 5 1 is a necessary consequence 
(i.e. it is a necessary, but not sufficient condition for stability). (Note that if we exclude the 
trivial case a = c = 0, stability requires that a > 0.) 

The matrix method as used by S&G (and others) and herein, applied to (3, consists of 
computing (or at least getting an upper bound for) the spectral radius of E, p(E),  and 
defining the difference scheme to be stable if p(E)  I 1 and eigenvalues of magnitude 1 (if 
any) are simple; in particular, it is stable if p(E)  < 1. (In contrast with some authors, we do 
not allow p(E)  5 1 unconditionally because this could allow unbounded growth of E”, as we 
will demonstrate.) 

An alternative notion of stability is to require that I)El( 5 1 for some (induced) matrix norm. 
This condition implies llE”II I 1 and hence that the solution (see (6)) is uniformly bounded in 
n and N (as long as the initial and steady state vectors vary boundedly). Since p ( E )  5 IlEll, 
and this inequality is usually strict (it is here unless P = 0 and the norm is Euclidean), the 
matrix stability condition p(E)  < 1 clearly cannot be trusted to give such boundedness. 
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Rather, it guarantees only that solution perturbations are damped to zero as n + 00 for fixed 
N and At13314 This distinction will be discussed further in Section 2.4. 

As shown by S & G, a similarity transformation and some Gerschgorin analysis yield the 
following: for 01P51, the eigenvalues, h(E) ,  of E lie on the real interval 

1 - a -a J(1- P’) 5 h(E)  5 1 - a +a J(1- P’) 

whereas for P > 1, the eigenvalues lie on a vertical interval with endpoints 

1 - a - ia J (P2  - 1) and 1 - a + ia J (Pz  - 1) 

In the case P C  1, since the upper bound never exceeds 1, we can guarantee that p(E)  < 1 if 

1 -a - a J(1- P’) > - 1 
or  

a <2/[1+ J(1 - P2)] 

In the case P > 1, we have 

p’(E) 5 (1 - a)2+ a2(P2- 1) 

=1-2a+c2 

and thus p(E)  < 1 whenever c’< 2a, or 

a <2/P2 (13) 

Conditions (12) and (13) are sufficient to ensure that p ( E )  < 1 but not necessary, because 
the eigenvalue bounds used are not sharp. However, a detailed analysis (the results of which 
will be shown later) shows that for large N the bounds are very close, so that the above 
upper bounds for a are nearly necessary as well as sufficient. 

Comparing these results with those from the von Neumann method, it is seen that the 
matrix method always permits a larger time step for P > 0; for P 2 1 it is larger by a factor of 
2, and for P < l  the factor is less than 2. It is just this (important) factor (between 1 and 2) 
that caused the confusion in the S & G numerical results and resulted in the follow-up papers 
by Morton13 and Griffiths et a l l 4  We will return to this point after considering the effect of 
different boundary conditions. 

2.3. Stability results for other boundary conditions 

Since the matrix A in (4) is (slightly) different for different boundary conditions, it follows 
that the (matrix) stability results may also differ. In this section, we summarize the results 
when the matrix method is applied to five types of boundary conditions: (i) Dirichlet, (ii) 
Neumann, (iii) Dirichlet/Neumann (the only case discussed thus far), (iv) periodic and (v) 
Dirichlet/Robin. In addition, we will present the corresponding spectra (eigenvalues and 
eigenfunctions) for the continuum problem, partly for completeness and partly as a check on 
the discrete results; i.e. in all cases, it can be shown that the discrete (matrix) results 
approach those from the continuum as Ax -+ 0. Although relatively few of the following 
results are actually used in the sequel and although it is probably true that all of the results 
are already available (scattered through the literature), it seems useful to record them all in 
one place. 

2.3.1. Preliminaries. To analyse stability via the spectral radius method, we begin by 
defining the eigenvalue problems associated with the continuum and the semi-discretized 
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systems, from (2) and (4), respectively. For the general case (inhomogeneous boundary 
conditions), a change of dependent variable (e.g. (p = cp + a + px for appropriate a, p)  
recovers the homogeneous case (with a source term in general) and the stability results are 
the same. 

Thus, for the continuum, we seek a solution to (2) in the form cp(x, t )  = @(x>e-”‘ to give the 
continuous eigenvalue problem, 

K@”-ucD’=-A@, 0 5 x 5 1  (Z=1) (14) 

The corresponding approach applied to the semi-discretized system, (4), via y ( t )  = Ye-’”‘ 
gives, for b = 0, the discrete eigenvalue problem 

AY=-pY (15) 

and the problem definitions are completed by specifying the (homogeneous) boundary 
conditions (which of course are also reflected in the elements of A) for the various cases. 
Stability limits on At will generally be of interest only when the ODE system (4) is stable, i.e. 
when each p in (15) satisfies Re  ( p )  2 0  and eigenvalues with Re  ( p )  = 0 (if any) are simple. 
The equation corresponding to the general row of (15) (excluding the first and last, 
which vary with the boundary conditions) is 

(K/Ax2)(Y,+1-2yi + yi-1)- ( ~ / 2 A ~ ) ( y i + l -  Y,-l) = -py, (16) 

which is the discrete analogue of (14). 
We now display the results (A, @(x) for the continuum and p, Y for the semi-discretized 

system) for the boundary conditions of interest and introduce the global Peclet number, 
defined here as Pe = u112K = PlIAx. 

2.3.2. Din’chlet. Here @(O) = cD(1) = 0, Yo = YN+l = 0, and Ax = l/(N+ 1). The results are: 

A, = K(n2m2+Pe2)/12 (174 

(17b) 

(18) 

@.,(x) = ePer/‘ sin n d l ;  

p, =(2K/Ax2)(1-J(1-P2) cos mm Axll) 

n = 1,2 ,  . . . 
and 

1 + P  ‘ I 2  (E) sin jmm AxI1, for P < 1  (194 

(19b) 
P + l  i’2 

(-i)j(-) sin jmm Ax/l, for P > 1 4 P - 1  

y ! m )  = 

where j ,  rn range over 1 , 2 , .  . . , N. Note that p, is real (like Am), and Yi(m) is ‘similar’ to 
cD,(x) for P<1, and p, is complex (unlike Am), with Y;”) also displaying a complex, 
ostensibly non-physical behaviour for P > 1. Finally, for P = 1, we have a bidiagonal matrix 
and the concomitant degenerate case, 

p = 2K/Ax2 for all m (an eigenvalue of multiplicity N )  

Y =  (O,O, . . . , 0, 
(204 
(20b) (only one eigenvector) 

2.3.3. Neumann. Here cp’(0) 4 cD’(1) = 0 and, for the discrete system, the image point 
method is used at the first and last nodes, j ranges over 0, 1,2 ,  . . . , N, Ax = 1/N, and the size 
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of A is (N+ l)X(N+l) .  The results are: 

A. = 0; A, = K(n2r2+Pe2)/12, n = 1,2, . . . (214 
@,(x) = 1; cP,(x) = epeX/l[cos nrxll- (Pe/n.rr) sin nrx/l]; n = 1,2, . . . (21b) 

po=O, pm=(2K/Ax2) (1 -d(1 -P2)~~~mrAx/ l ) ,  m = l , 2 ,  ..., N-1 (22a) 
YCO)= (1,. . . , 1)' (22b) 

(224 

' { ( - i ) ' E Y ( c o s  - jmr Axil - Pcot m r  Ax/l sin jmr Axll), for P> 1 (224 

and 

(g ) i ' 2 ( cos  jmr Ax/l - P cot mm Axll sin jmr Ax/l), f o r P < l  
y w  = 

j=O,1,2 ,..., N and m = l , 2  , . . . ,  N-1 
And finally, 

a 2Ax wave. For P = 1, the degenerate result is the same as for the Dirichlet case. 

2.3.4. DirichletlNeumann. Here @(O) = W(1) = 0 and, for the discrete system, Yo = 0 and 
the image point method is used at x = 1; here j ranges from 1 to N (the matrix size) and 
Ax = 1/N. The eigenvalues in this case are only available implicitly rather than in closed 
form: 

A, = K(yt+Pe2)/12 (244 
where y, are the roots of 

Pe tan y+-y=O 

@,(XI = ePeJ'sin ynx, n = I, 2, . . . 
Also 

p, =(2K/A~~)( l - -d( l - -P~)  cos 4,) 
where the rfr, are the N roots (0 < t+bm < r )  of 

(25b) P tan NG, +tan 4, = 0 

Again, for P =  1, the degenerate result is the same as for the Dirichlet case. 

2.3.5. Periodic. Here @(O) = @(1) and @'(O) = @'(l), whereas for the discrete system we 
have Ax = 1/N, j = 1,2, . . . , N, and periodicity is enforced via Yo = YN and YN+l = Yl (i.e. 
there are now entries in the (1, N )  and (N, 1) positions of A). The results are 

A, = 4nrK(nr + iPe)/12 
@,(x) = ei2-'l, n = 0, *I, *2, . . . 
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and 
p, = (2K/Ax2)[(1 -cos 2m1r Axll) + iP sin 2m1r Axll] (274 

(27b) 

The DirichletlRobin case is deferred until Section 2.3.8 for reasons which will become 

2.3.6. Stability. The (spectral radius) matrix method of stability analysis translates im- 

y j m )  = ,i2mimAx/I. , m,j=1,2 ,..., N 

and the latter apply for all values of P 2 0 .  

clear. 

mediately to the following requirement for the eigenvalues of A (for all m): 

(1 - p, At1 I 1 and, whenever 11 - p, At1 = 1, pm must be simple (28) 

If pm = 0, it must be a simple eigenvalue, and there is no corresponding At constraint. If 
pm is real and non-zero, it must be positive and (28) becomes 

At<2/pm or Ats2Ipm for p, simple (29) 
If p, is complex, p, = pz)+ ips), then p:) must be greater than zero and (28) becomes 

At <2p:)I[(p9’+ (p:))2], or At  ~ 2 p ~ ) l [ ( p ~ ) ) ~ +  ( ~ 9 ~ 1  for pm simple (30) 

For all cases except Dirichlet/Robin (see Section 2.3.8), the conditions for the stability of 

For the Dirichlet and DirichletINeumann (mixed) boundary condition cases, it is easy to 
(4) hold. 

see, for the practical case N >> 1, that these stability limits are 

for P < 1 ( p m  is real) 
Ax2/K 

1 + J(1- P2) ’ 
A t 5  

A t  sAx2/P2K = 4K/u2, for P > 1 ( p m  is complex) 

for P =  1 (p, is real, but not simple) 

(32) 

(33) 
and 

At<Ax2/K, 

For the Neumann case, we obtain, in addition to the above results, 
A t  sAx2/2K (34) 

for any value of P ;  this corresponds to the 2Ax wave. 
Finally, for the periodic case we first present the precise results, from (27): 

(Ax 2/2 K, for N even and PI 1 

for N odd and P C  1 
Ax2/K 

Ats~( l+P2)+( l -P2)cosdN.  
and 

4K/u2 
(1 + cos 27~/N) + (1 - cos 2.rrlN)/P2 ’ 

A t 5  for P>l  

For N >> 1 these are easily seen to be: 

AtsAx2/2K, for P s ~  (364 
and 

which are equivalent to (9)-(11). 

At  s2KIu2, for P >  1 
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2.3.7. Discussion. In the two cases where at least one boundary condition is Dirichlet, the 
matrix results for the upper bound on At are larger than those from the von Neumann 
method, by a factor of 2/[1+ J (1 -  P2)]  for P 5 1 and by a factor of 2 for P 2 1. To this extent 
then, Dirichlet boundary conditions are ‘stabilizing’. The problem with this result, as already 
alluded to, as shown by Griffiths et al.,14 and as will be further exemplified in Section 2.4, is 
that it is misleading; these looser limits on At can result in significant growth of the 
numerical ‘solution’ before the boundary conditions finally ‘stabilize’ it. 

For the Neumann case, the matrix results are better, but still not strict enough since they 
too permit too large a At for P>1 and a factor of 2 larger At when P 2 > 2  (the 2Ax wave 
leads to the correct result for P 5 1). 

Finally, for periodic boundary conditions, the results are in excellent agreement with those 
from the (continuous) von Neumann analysis which is, of course, not surprising. The matrix 
results for this case are the most conservative of all the above matrix results and the von 
Neumann result is only slightly (0(1/N2)) more conservative than this. See also Reference 
19 for further elaboration of this point. For the case of pure diffusion (P=O), it is 
noteworthy in all cases that the matrix results agree with those from von Neumann analysis. 
It is the first spatial derivative term (advection) that causes the ‘problem’; the system is no 
longer self-adjoint. 

A final remark here is that the von Neumann method assumes that some ‘energy’ is 
contained in every Fourier mode whereas the matrix method basically tests the stability of 
each eigenvector. This distinction leads to the rare but possible case where the von Neumann 
results could be much too conservative; e.g. consider Dirichlet boundary conditions with the 
initial data specified to be the first eigenvector and P = 0. If N >> 1, the true stability limit (to 
O(l/N’) from (18) and (29)) is At  s2l2/7r2K whereas that from the von Neumann method is 
(still) Atl12/2N2K. These special cases are ignored in the general stability analysis by 
assuming ‘arbitrary’ initial data (which also includes the random perturbations associated 
with round-off error). 

2.3.8 Robin boundary conditions. Finally we present a summary of results for one other 
type of ‘mixed’ boundary condition which is employed in practice (especially for pure 
diffusion): Dirichlet at the left (q = 0 at x = 0) and Robin (or ‘boundary condition of the third 
kind’) at the right (dcp/ax + hq = 0 at x = 1, where h 2 0 is a given constant). It is a special case 
in so many ways that is presented separately. Although the associated continuum eigenvalue 
problem is straightforward, that corresponding to the semi-discrete equations is very compli- 
cated; for this reason (in part), the matrix stability analysis is supplemented by one using 
more modern and powerful methods for stability analysis. Also, this case will be seen to be 
exceptional regarding stability: (1) under some conditions, it is less stable than a von 
Neumann analysis would predict (the Robin boundary condition can truly be destabilizing) 
and (2) under other conditions ( P > 1  and h ‘too large’), it is unconditionally unstable; i.e. 
the ODEs from FTCS are themselves unstable. 

The latter problem (among others) is avoided if the Robin boundary condition is 
implemented via the finite element method (as a natural boundary condition) rather than the 
image point method usually associated with FTCS. Thus, we begin by presenting the two 
different ODEs associated with the last node (N): the image point method yields, with 
H = h  Ax, 

whereas the EM-derived equation is 

(AX2/2K)& = ~ N - I  -[I + H(1 - P ) ] ~ N  (37) 
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both of which imply &p/i3x + h q  = 0 as A x  + 0. However, the very form of the 'finite 
difference' equation should be suspect at once if P >  1 and, in particular, if H(P-  1) is large, 
since then the ODE matrix has a large positive coefficient on the diagonal; indeed, this 
suspicion is warranted, as we will show. A further advantage of the FEM equation, which is 
borne out in practice, is that for K = h = 0 it yields a proper outflow equation consistent with 
the associated hyperbolic PDE (whereas the FTCS equation yields the spurious result 
(PN = 0). Thus (38) is especially useful as a passive outflow equation in the common case of 
advection-dominated flow (P >> l ) ,  especially when h = 0, where it is the FEM version of the 
Dirichlet/Neumann boundary condition discussed earlier via the image point method. 

The spectrum for the continuous problem is 
A, = K(y:  + pe2)/P (394  

(39b) 

tan y + y/(hl+ Pe) = 0 yields yn, n = 1,2, . . . (394 

@(x) = ePex" sin ynx 
where 

The complete discrete results are too complex to state. Rather, we shall present an 
alternative stability analysis which gives the same results as the (N >> 1) matrix method (which 
we have also analysed) when each is supplemented by the von Neumann condition. 

Since we are primarily interested in the effect of the Robin boundary condition at x = 1, we 
shall ignore the Dirichlet condition at x = O  by reposing the problem on the quadrant 
{-a < x < 1, t > 0). This device will have little discernible effect on the stability conditions, 
provided that N is sufficiently large; i.e. there are sufficiently many grid points in (0 < x < 1) 
to avoid any significant interactions between the two boundaries. Discretization of (3) then 
leads to the equations 

(p,"+'= (1/2)[ff(l+P)q~~1+2(1-ff)q~+ff(l-P)q~+:l] (40) 

qF;t+ll= q&It - 2HqL+,+' (41) 

for - a < j  IN and, employing first a simple centred difference approximation (image point) 
of the Robin boundary condition, we have 

(Note that (40) at j = N with (41) at time index 12 give exactly the forward time difference 
form of the ODE (37).) 

The stability analysis we present is based on the work of Osher." Though it is closely 
related to the normal mode analysis developed by Kreiss and his coworkers for hyperbolic 
equations (see, e.g. Reference 21), it has the advantage that it does not rely on consistency 
with differential equations of a particular type. 

We seek a solution of (40) and (41) in the form 

q; = c g n q  (42) 

where C is a constant, 5 is the analogue of the amplification factor in von Neumann analyses, 
and @ is a bounded function of j in the sense that 

N+1 

Ax ( @ i ) 2 < ~  

Substituting (42) into (40) and (41) gives, respectively, 

and 

(43) 

(44) 

(45) 
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Appealing now to the results of Godunov and Ryabenkii (see, e.g. R&M), necessary 

1. The system (40) should be stable in the sense of von Neumann, i.e. (9) must be 
satisfied. 

2. Any non-trivial bounded solution to (44) and (45) must have 161 5 1. (If (40) and (41) 
were written in matrix-vector form, this condition would be equivalent to the require- 
ment that the spectral radius of E should not exceed unity.) 

To analyse when condition 2 holds, we note that Qi satisfies a three point difference 
equation and therefore has a general solution of the form Qi = A K ~  + B K ~  where z = K ~ ,  K~ 

are the two roots of the equations (from (44) and (45)) 

a (1 - P)z2+  2( 1 - a - 5)z  + a (1 + P)  = 0 (46) 

Z 2 + 2 H Z  - 1 = 0  (47) 

conditions for the stability of (40) and (41) are: 

Equation (47) implies that the product K ~ K ~  = -1 so that we may stipulate 1~~12 12 I K ~ (  (with 
strict inequality for H # 0) and, to obtain a bounded solution we must have B = 0 so that we 
only consider the larger root K ~ .  From (47) we find K ~ = - H - J ( ~ + H ~ )  and hence, from 
(46), we obtain 

t = 1 - a[ 1 - HP + J( 1 + H")] (48) 

(i) If P 5 1: 0 5 a 5 2/[1- HP + J ( 1 +  HZ)] (494 

(ii) If P>1: H52P/(P2-1) (49b) 

Applying the necessary condition that 161 5 1 leads to 

and these have to be taken in conjunction with (10) from the von Neumann condition. 

Remarks 
(i) If P = 1, (49a) still applies but is less strict than the von Neumann 'condition, a 5 1. 

(ii) For P> 1, the ODES themselves (N>>1) are unstable if H>2P/(P2-1); if H <  
2P/(P2-  l), they are stable, and the difference equations are then also stable for a I 1. 

We now turn to the derivation of sufficient conditions for stability. Specializing the results 

1. The scheme should be stable in the sense of von Neumann; (10) must be satisfied. 
2. For each l.$l>l, the roots of (46) should be distinct. It is easy to verify that for 

0 < a  s 1, (up2< 1, P f  1, this condition holds. The degenerate cases a = 0 and a > 0, 
P = 1 are easily analysed separately and are stable as long as the von Neumann 
conditions hold. 

of Osher" to the present situation we find these to be: 

3 .  5 = 1 should not be a solution of (46), i.e. we require a # 0. 
4. K ~ + ~ H K ~ -  1 = 0 and z = K~ imply 161 < 1. Except for the case 161 = 1, the analysis 

follows that for the necessary conditions given above. In this way we derive (49) with 
strict equality omitted. If these conditions are satisfied, the scheme (40), (41) is stable. 

We now examine the E M  version of the boundary equation (38), discretized in the 
obvious way, 

cp ;;"I = [ 1 - a (1 + H + P)]p&+ a (1 + P)cp;;-l (501 

This system ((40) for --co< j <N and (50)) is equivalent to (40) for -a< j IN with the 
boundary condition, 

where the case P = 1 is temporarily excluded. 

(1 - P)cp ;:; + 2(H + P)p;;+:' - (1 + P)cp;;t_', = 0 (5  1) 



865 EXPLICIT EULER TIME-INTEGRATION 

The analysis of (40) and (51) now closely follows the previous case with (47) replaced by 

We now find that K~ = [P+H+J(1+2HP+H2)]/(P-  1) and the analogue of (48) is 
(1 -P)z*+ 2(H+ P ) z  - (1 + P )  = 0 

5 = 1 - a[  1 + d(1+ 2HP + HZ)] 

0 5 a 5 2/[ 1 + J(1+ 2HP + H2)] 

(52) 

(53) 

(54) 

The specification of sufficient conditions for stability follows in an obvious way as in the 
preceding case and leads to (54) with strict equality omitted. The case P = 1 can be shown to 
be stable, if (54) is satisfied, by a direct study of the difference equations. 

Remarks 

Necessary conditions for this scheme are therefore the von Neumann conditions (10) 
together with 

(i) There is never unconditional instability in this case. 
(ii) For pure diffusion ( P  = O), both schemes give (Y 5 2/[1+ d(1 + H2)]  as necessary and 

sufficient for stability. For this case, Gerschgorin analysis ensures stability if a 5 
2/(2+ H). In at least several  reference^^^,^^,^^ this more conservative Gerschgorin 
sufficient condition was presented as the stability requirement. 

(iii) The stability analysis presented above can also be applied to the boundary conditions 
treated earlier by the matrix method, and would lead to (9) for all cases. 

As a final remark concerning the Robin boundary condition, we point out that only the 
case h l s 0 ( 1 ) ,  giving H<<1,  is 'practical' in the following sense: If H r O ( l ) ,  then 
h(=H/Ax)>>l and the Robin boundary condition is actually very close (effectively) to the 
Dirichlet boundary condition (cp = 0) and should be so replaced rather than adding unneces- 
sary and expensive (small At is required) additional stiffness to the ODES. And in this 
practical case, it is seen that (unless P is so large that HP = O(1)) the original von Neumann 
results come quite close to describing the true stability limits. 

2.4. Example of makix method failure 

Initially, only the original (Dirichlet/Neumann) boundary condition case will be considered 
here, for simplicity. Recall that the actual discrete FTCS approximations, ignoring round-off 
errors, are given in vector form by (6), which involves the N x  N tridiagonal matrix E. Thus 
the asymptotic nature of these values is governed entirely by that of the matrix powers, E". 
When At is limited by the matrix method stability condition (see equations (12) and (13)), we 
are guaranteed that the spectral radius of E satisfies p(E) < 1, and therefore that E" -+ 0 as 
n + m. However, this is a statement about the large n limit for fixed matrix order N, and 
says nothing about the sizes of the elements of E" as both n and N vary. In fact, for a fixed 
but large value of N, these sizes can become extremely large before approaching zero as 
n + m. (See also Reference 14.) This is the basic failure of the matrix method. 

We can illustrate this flaw quite concretely by studying E" in the simple case P = 1. Here 
the matrix method stability bound is a <2, whereas the von Neumann stability bound is 
a 5 1. The discrepancy, by a factor of 2, is as large as it ever gets. This choice also makes 
E" easier to analyse, as E is now lower triangular and bidiagonal (and the ensuing analysis 
now also applies to the case with Dirichlet boundary conditions): 
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This case also illustrates the need to require more than just p(E)<l ,  to ensure that 
E"-+0. For if a =2 ,  we have p (E)= l ,  but because 1 is a multiple eigenvalue, En has 
elements of magnitude 2n (among others of possibly greater size) for all n > l .  (See the 
Appendix for details.) Thus in this case En does not approach zero for any fixed N (see also 
Reference 24). 

As we are interested in how large the elements of En can get, we first define 

mN(a,  ZG max I f E " ) q  I 
1.J 

i.e. the maximum element magnitude in En. Thus for a <2, mN(a, n)  approaches zero as 
n + m, but can get as large as 

M N ( a )  max mN(a, n)  

Figure 1 shows m,(a, n)  vs. n for a = 1.2, N= 40 and 100; the peak value is roughly lo6 for 
N = 40 and 1016 for N = 100. On the same plot is also shown the von Neumann (monotonic) 
growth curve, given by (1.4)"; the close proximity of the two results, during the growth 
phase, is interesting. 

The Appendix contains a detailed analysis of the function MN(a).  In what follows, only 
the results will be stated. 

When a 5 1, we find that M N ( a )  5 1 independent of N, and in fact the norms IIE"II, are 
also uniformly bounded by 1 (see also Reference 16). (Here 1IA(I,=max& laiil.) Uniform 

boundedness of E n  (in an appropriate norm), uniformly in n and N, is also stated by 
MortonI3 to be the essential stability property needed in the Lax equivalence theorem 
relating stability to convergence. 

n z  1 

I 

For any fixed a with 1 < a < 2, and for any N 2 2, we find that 

a bound which is obviously very large if N >> 1 and a is close to 2. The estimates of the 
mN(a, n )  used for this result have their maximum value roughly at n = n*=(N-1)/(2-a) 

E + 1 7  

E +  13 

E + 9  

C E + 5  

= E + l  

E' E-3 

-! 

E -7 

E -11 

E -15  " " " ' " "  
0 40 80 120 160 200 240 

n 

Figure 1. rnN(a, n) vs. n for a = 1.2 and N = 40, 100. The dashed line shows the corresponding growth of the von 
Neumann amplification factor, 151" 
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Figure 2. M&) vs. N for three values of LY > 1. The dashed lines show the upper and lower bounds 

for large N, and this suggests that the same is true for the mN(a, n ) ,  themselves. Moreover, 
for large N and n near a*, the estimates of the individual element magnitudes are 
maximized at the corner element ( E " ) N , I .  This information leads to a good lower bound, 
namely: 

[I- d(a) / (N-  1>1 
J[(a - 1)(N- l)] 

MN(a)  > 0.335 

where d ( a )  =_ (2- a)(5/2 - a)/(a - l),  which is valid for all N r  1.5/(a - 1). Figure 2 shows 
plots of MN(a)  for a = 1.2, 1.4 and 1.6, and these upper and lower bounds as functions of N. 
Note that the lower bound is quite close to MN(a).  

The ratio of the upper bound in (55) to the lower bound in (56) is clearly much smaller 
than either of the bounds themselves when N is large. Thus either bound can be taken as a 
good approximation to MN(a)  for 1 <a < 2 and all sufficiently large N, but we will use that 
in (55) because of its simplicity. It is clear then that for any fixed a with 1 <a < 2, the 
elements of E" can be arbitrarily large, with a maximum magnitude growing exponentially 
with N as N gets large. When this happens, we can expect the computed transient FTCS 
solution to have grossly inaccurate values, even though they may (depending solely on Ax) 
approach an accurate steady state in the limit as n + 00. 

The occurrence of numerically unstable or grossly inaccurate answers for FTCS when 
1 < a < 2 was observed by S & G, but not explained by them. An explanation was given by 
Morton13 and Griffiths e l  all4 and the present analysis provides an even more quantitative 
explanation, at least for the special case P = 1. In the notation of S & G, the advection 
coefficient is A, the diffusion coefficient is 1, Ax is called h, and r = At/h2 ,  so that the case 
P = 1, 1 < a < 2 corresponds in their notation to a = Ah/2 = 1, 1/2 < r < 1, and the mesh size 
N is given by N =  l / h  = A/2. Figure 5 of S & G has plots, in terms of Ah and r, of the regions 
that were found empirically to be stable or in which 'solutions obtained appeared stable but 
were very inaccurate'. Plots are given for A = 10, 100 and 877.9. Along the line Ah = 
2(P = l) ,  the boundary between the stable and inaccurate regions appears to lie at about 

r = 0-72 (a = 1-44), 
r = 0.58 (a! = 1-16), 
r = 0.5 (a = l), 

for A = 10(N = 5 )  
for h = 100(N= 50) 
for A = 877-9(N = 439) 
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By comparison, if we define this boundary to be where M,(a) reaches (say) 1000, and use 
the approximation in (SS), we find that the corresponding values of a are 

a = 1 - 7 0  ( N = 5 )  
a = 1-07 ( N  = 50) 

and 
a = 1.008 ( N  = 439) 

in reasonable agreement with the results of S & G. 
Similarly, we can explain the numerical results of Griffiths et aZ.,14 who give tables of 

llE"llm, together with some analytical upper and lower bounds for these norms. With regard 
to cases where very large values of this norm occur, there is relatively little distinction 
between the matrix norm \(A(), and the maximum element magnitude studied herein, as the 
two can differ by at most a factor of N, and the values of MN(a)  in question are much larger 
than N. In our notation, Griffiths et al.14 tabulated \(E"l(m and its computed maximum value 
over n, for selected values of P, a and N. For P = 1, they consider only a = 1-2, and for the 
values N = 10, 20 and 40, their computed values of max J(E"(J, are 23, 1030 and 2.6 x lo6, 
respectively. By comparison, our estimates of M,(a) from (55), with the same a and N 
values, are 38, 2217, and 7 - 4 x  lo6, respectively. The agreement is within a factor of 3 in all 
cases. Griffiths et aE.14 also discuss the fact that large values of I(E"(1, imply the possibility of 
very inaccurate computed transient solutions. 

Filially we note that an example very close to this had been used previously by R & M (p. 
152); although they were actually considering pure advection ( K  = 0) via upwinding, the final 
equations are essentially the same. (Pure advection with upwinding is equivalent to FTCS 
with P =  1.) More importantly, they point out that this is the type of matrix (not a normal 
matrix, which describes E for all P > 0) for which the spectral radius concept of stability is 
inappropriate. 

We now discard the matrix method and in the remainder of the paper use the (continuous) 
von Neumann method almost exclusively. 

2.5. Additional results from the von Neumann method 

The von Neumann results from the FTCS case are easily extended to two related 
difference schemes. Although not new, these 1-D results are presented for completeness, 
since similar (and new) results will also be derived in 2-D and 3-D. 

2.5.1. Modified FTCS. Although the correct FT'CS stability limits are now known, they 
are still too restrictive for advection-dominated simulations, i.e. At must be too small (from 
c 5 1/P) to be practical when P >> 1. Thus we present a modified FTCS scheme and point out 
its significant advantages in cost-effectiveness. In a later section we will extend this scheme to 
multi-dimensions. 

If the forward Euler method is applied to (2) prior to spatial discretization, a Taylor series 
analysis of the resulting scheme shows that the local time truncation error is responsible for 
reducing the effective diffusivity so that the equation actually being solved looks more like 

&plat + u dcpldx = (K  - u2 Atl2) d2p/ax2 (57) 

where higher order derivatives have been neglected. (This implies that 2K/u2 will be an 
approximate upper stability bound on At for any spatial discretization scheme which is 
sufficiently accurate (e.g. it does not apply to schemes such as upwinding which increase the 



EXPLICIT EWER TIME-IN-ITGRATION 869 

effective difisivity via the advection term) and that the actual equation effectively being 
solved is closer to the pure advection equation the closer At is to this value; and, for FTCS, 
numerical experiments support this interpretation?) This observation is one basis (for others, 
see Reference 1) for at least considering the following scheme for generating an approximate 
solution to (2): 

(cpy+')- cpj"')/At+ ~ ( c p ; : ;  -cpp\)/2A~ = (K+ u2 At/2)(cpK\-2pf')+ cpe',)/Ax2 (58) 
which we refer to as modified FTCS. In the absence of physical diffusion ( K  = 0) this is called 
Leith's method (e.g., see Reference 1); it is also equivalent, for the special case considered 
herein, to the Lax-Wendroff method (e.g., see Reference 25), again for K = 0. 

Since (58) is equivalent, with K replaced by K +  u2 At/2, to FTCS, the stability results for 
the latter may be applied directly to the modified FTXS scheme; e.g. by replacing a! by a! + c2 
in (9). Here and henceforth we retain the original definitions of a and P, in terms of K.  The 
results are c2< a + c2< 1. The left inequality gives a 2 0  and the right one yields, using 
a = c/P, 

c 5 2P/[ 1 + J( 1 + 4P2)] = [J( 1 + 4P2) - 1]/2P 

a 5 2/[  1 + J(1+ 4P2)] = [J( 1 + 4P2) - 1]/2P2 

(59d 

(59b) 

or, equivalently, 

It is noteworthy that modified FTCS is stable when K = 0 if c I 1 (P = 00 in (59a)) whereas 
FTCS is unconditionally unstable in the absence of diffusion. In addition to significantly 
enlarging the stability limit for large P (specifically, for P>J2), the numerical phase speed 
( K  = 0) is more accurate, especially for c -+ 1. Overall, this scheme has much to recommend 
it over FTCS. For a discussion of phase and damping error of this scheme, see References 3 
and 4. 

2.5.2. Upwinded advection. If the advection operator in the spatial discretization is 
changed, for u 2 0 ,  to u(cpi - cpi-l)/Ax, we have the well known, but controversial first-order 
(in space) upwind difference scheme. Since this scheme may also be derived from FTCS, by 
replacing K by K + u Ax/2, the necessary and sufficient conditions for stability of this scheme 
are also contained in (9), with a replaced by a! + c. The result (from a! I 1 in (9)) is 

csP / ( l+P)  or a!s l / ( l+P)  (60) 

The other inequality in (9) is non-limiting, because the corresponding bound on c or a! is 
always larger than the one above. Again K = 0 is permissible; stability then requires c 5 1, as 
for modified FTCS. (If the matrix method were applied to this case, the results would be 

Modified FTCS 

0 1 2 3 4 5 
Figure 3. Stability limits for three schemes in the form of Courant number vs. grid Peclet number. The schemes are 

unstable if C lies above the curves 
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Figure 4. Stability limits 
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for three schemes in the form of the diffusion parameter (a) vs. 
schemes are unstable if a lies above the curves 

grid Peclet number. The 

c < 2; this is the case critically discussed by R & M (p. 152).) This scheme, however, has little 
to recommend it because it is much too diffusive.26 

Figures 3 and 4 show the stability results, as c and a vs. grid Peclet number, for the three 
schemes analysed above. (These results were previously obtained by Morton.8) FTCS only 
has a stability advantage over modified FTCS for P<d2;  it is especially restrictive for 
advection-dominated flow ( P  >> l),  which is probably one reason that it is rarely used in 
practice for this case. 

2.6. Behauiour of  the most unstable mode 

It is of some interest to enquire about the behaviour of a numerical ‘solution’ if the 
stability limit is exceeded. Such information is useful, not only to further our understanding 
of the behaviour of a numerical algorithm, but also to provide clues and insight into the 
numerical results obtained in more difficult situations (e.g. non-constant or non-linear 
coefficients and/or a variable mesh, multi-dimensions, etc.). To this end then, we present a 
discussion of the detailed behaviour, in both time and space, when FTCS (and variants) is 
operated in the unstable regime for the case of periodic boundary conditions. 

2.6.1. Analysis for FTCS. The starting point for the analysis is the complex amplitude 
coefficient from the von Neumann analysis, equation (7). From this equation we easily derive 
F(z)=1[I2-1 where Z = C O S ~  A x :  

F ( z ) = ( 1 - Z ) [ ~ 2 ( 1 - Z ) + C 2 ( 1 + Z ) - 2 a ] ,  - 1 I Z 5 1  (61) 

and the FTCS scheme is unstable when F>O. 
We will also need the following definitions: 

(i) the most unstable mode is that whose wavelength (A, = 2m/km)  generates the max- 

(ii) \tm1 = I[(Am)l is the growth rate of the most unstable mode. 
(iii) the temporal period of the most unstable mode is denoted by T. 
(iv) The phase speed (up) is the apparent translational speed of the wave (which is just u 

(v) If Atc is the critical time step (neutrally stable, leml = l),  the measure of the size of the 

imum value of 161. 

in the continuum); it is given by up=Am/r for the most unstable mode. 

instability will be E ,  defined by At = (1 + E )  At,. 
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Remarks 
(i) Even though many wave numbers could be unstable for a given E, the most unstable 

wave would ultimately dominate all others in most practical calculations (one involv- 
ing essentially all of the possible Fourier modes). This of course means that the results 
to be presented may actually be misleading for certain short-time computations, in 
which the initial conditions may well cause a different unstable mode to dominate the 
solution. 

(ii) The instability parameter need not be small; we will consider 0 d E < 00. 

(iii) Wherever ambiguity may arise regarding positive or negative wave numbers, we shall 
use the convention that assumes k > O ;  the final results are the same for either sign 
of k. 

Since the behaviour of the most unstable mode depends in a crucial way on the value of 
the grid Peclet number (even more so than does the stability), it is convenient to classify and 
discuss it according to the value of P. 

(i) P 5 1. For this case we have Atc = Ax2/2K and thus, 

a! = 2K At/Ax2 = 2K At,( l+ &)/Ax2 = 1 + E 

and 

c = u At/Ax = u Atc( l  + &)/AX = u Ax(1 + E ) / ~ K  = P(1+ E )  

Inserting these into (61) for P < 1 gives a simple parabola, concave upward, and a little 
analysis reveals that F ( z )  first becomes positive at z = -1 for E > O  and that F(-1) is always 
the largest value of F ( z )  on -1 I z I 1 for E > 0. Since this corresponds to k Ax = T, we have 
A, = 2Ax (the ubiquitous 2Ax wave) for this case. Inserting 8 = k ,  Ax = 7~ and a! = 1 + E into 
(7)  gives Ern = -(1+ 2 ~ )  and a growth rate 1[,1 = 1 + 2 ~ .  Since then [L = (-1)" I [ m l " ,  the 2Ax 
instability is manifest as a wave with a 2At, period, i.e. r = 2At. This common instability is 
also probably the easiest to detect since it grows rapidly and 'everything' oscillates as fast as 
possible. 

For P = 1, F ( z )  is linear and all modes become simultaneously unstable (longer waves are 
stable for small E when P < 1), with the 2Ax wave again showing the largest growth rate 
(1 + 2 ~ )  and a 2At period. 

Finally, the phase speed is up = A,/T = Ax/At, and thus the wave moves one grid point per 
time step. The relative phase speed is uJu = l / c  = l/[P[(l+~)], which can be much greater 
than 1 for small P (and E not too large). The fact that a 2Ax wave is even moving is perhaps 
paradoxical, but we believe that this is a more appropriate interpretation than that which 
construes it to be stationary. If, however, u = 0 (i.e. pure diffusion is being studied), we too 
revert to the interpretation that the (most unstable) 2Ax wave is stationary (we then regard [ 
as purely real and abandon the notion of up = A,/T), as indeed is any wave; in this case, the 
standing wave will decay monotonically for a < 1/2 but will display a 2At  period for a! > 1/2 
and will do so unstably if a! > 1. Finally we remark that the actual discrete solution is, of 
course, indifferent to the manner of interpretation. 

(ii) 1 <P2 ( 2 .  For P >  1 we have Atc = 2K/u2 and obtain, in a similar manner as above, 
a! = (1 + &)/P2 and c = (1 + E)/P which again yields a parabola for F ( z ) ,  this time concave 
downward and an interior maximum could occur. Then, setting F'(zm) = 0 yields the 
(potentially) most unstable mode, 

Z, = cos 8, = cos k ,  AX = cos (27~ AX/&,,) = (P2-  1 - &)/[(P2- 1)(1+ E)] (62) 
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where we require 1 ~ ~ 1 5 1 .  The function A,(&) decreases monotonically from A, = 
(T Ax/P) J[2(P2- 1 ) / ~ ]  for E << 1 (but see Section 2.6.3), passes through A, = 4Ax at E = 
P’ - 1, and reaches A, = 2Ax at E = E,= 2(P2 - 1)/(2 - P’) (the value at which 2, reaches 
-1). For E > E,, there is no maximum of F ( z )  in the interior ( z (  < 1; rather, the maximum 
now always occurs at z = -1 and thus, A, = 2Ax is the most unstable mode for all E 2 E,  

(even though all modes are then unstable). 
Inserting the above values of a and c into (7) with 6, given by (62) gives 

which is valid when E 5 E,. The growth rate, from (63), is 

and (from (7) with 8 = T )  

ltml = 2(1+ E)/P’- 1, for E > E,  

Equation (63) can also be expressed as 5, = leml e&* where +/I is the phase angle, given by 

J{E[(P2-1)(2+&)-&]} 
tan +/I= 

P 2 - 1 - E  

The period of the oscillation associated with is then ~ T / J + / I , J  time steps, or 

T = 2~ At/($! (66) 

The period, r ( E ) ,  decreases monotonically from r = T AtJ[2(P2- 1 ) / ~ ]  for E << 1 (but see 
Section 2.6.3) and passes through 4At at E =P2- 1. Thus, at E = P 2 -  1, the most unstable 
mode has a 4Ax wavelength and a 4At period. r continues to decrease with increasing E, 

finally reaching 2At at E = E,, the same point that A, attains 2Ax. For E 2 E,, the most 
unstable wave has a length of 2Ax and a period of 2At. 

Finally, the relative phase speed, up/u = A,/ur, decreases like 1 - 4 3  for E << 1, passes 
through 1/P at E = P 2 -  1 (the 4Ax, 4At wave), and is given by u,/u = l / c  = P/(1+ E) for 
E Z E ,  (for E <E,,  up is obtained from (62) and (66)); the latter is equivalent to up= Ax/At 
and again the 2Ax wave moves one grid point per time step with a 2At period. 

(iii) 2 5 P 2 < ~ .  For this advection-dominated case, the maximum of F ( z )  remains in the 
interval l z ( 5 1  for all E so that (62)-(66) (except (64b) when E , = w )  are always applicable 
and there are no 2Ax, 2At waves (except for Pz= 2 and E +m). Asymptotically, as E +a, 
we have A, -+ 2~ AX/COS-’ [-1/(P2 - l)] 2 2Ax and r/At + 2~/ tan- l  [-J(P’- 2)] 2 2, where 
it is important to note that the argument of the inverse tangent is in the second quadrant of 
the complex plane (for 5, cf. (63)). 

(iv) P = 00. For the pure advection ( K  = 0) case, although all modes are unstable for any 
At, the 4Ax wave is the most unstable. Its growth rate is leml = J(1 -t c’) and its period is 
r = 23-r Atltan-’ c which varies from r = 2~ At/c = 2rr Ax/u for c << 1, through r = 8At  at c = 1 
and finally to T -- 4At for c >> 1. The relative phase speed is: up/u = ( ~ / T c )  tan-’ c which 
decreases monotonically from 2 / ~  at c = 0 toward zero at large c. 

The most unstable wavelength is plotted in Figure 5 and its growth rate, period, and phase 
speed (for P r  1) are shown in Figures 6-8, where it is interesting to note the small growth 
rates and large periods when P >> 1, for which the critical time step is very small. Apparently, 
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Figure 
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5. Most unstable wavelength for FTCS vs. At  for several grid Peclet 
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since c << 1 for these cases, very many times steps may be required before unstable behaviour 
would be clearly detected. 

It follows from the above discussion that the behaviour of FTCS in the general case 
(arbitrary initial data) can be expected to be quite complex when P >  1 and E >O. The 
instantaneous waveform will be a combination of many different unstable waves and the 
dominance of a 2At oscillation will be rare. Only at very large times (for which amplitudes 

Figure 6 .  Growth 
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rate of the most unstable mode for FTCS vs. At for several grid Peclet numbers 
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Figure 7. Period of the most unstable mode for ITCS vs. At for several grid Peclet numbers 

could be ridiculously large) will the behaviour be predictable; it will then agree with the 
graphs as the most unstable mode finally prevails. 

2.6.2. Variants of ETCS. For both modified FTCS and upwinded advection, it is 
straightforward to determine that F ( z ) ,  see (61), is (for any A t  of interest here) a parabola of 
the same general character as that for FTCS when P s  1; but now it is true for all values of P. 
Thus, the most unstable mode is the shortest wave, A, = 2Ax, with the shortest period, 
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Figure 8. Phase speed of the most unstable mode for FTCS vs. At for several grid Peclet numbers 
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r = 2At, and the phase speed is up = Ax/At or u,/u = l /c.  Unstable behaviour should thus be 
simpler to detect than for mCS, especially for modified FTCS, which has a larger growth 
rate (especially for large P )  when unstable; it is given by 

151 = 1 +2&[1+ c:(l+ F ) ]  (67) 

where c, = 2P/[1+ d(1+ 4P2)] is the critical Courant number. For the upwind scheme it is 
151 = 1 + 2 ~ ,  as for FTCS when P I 1. 

2.6.3. Modifications for discrete systems. As noted earlier, the matrix results are in very 
good agreement with the (continuous k j von Neumann analysis when N >> 1 and periodic 
boundary conditions are employed. Here we note the principal differences between these 
two analyses for the most unstable mode of FTCS, the matrix results now being the precise 
ones. (See also Reference 19.) 

If P = 1, the results of the two analyses are identical. If Pf 1, the critical At is very slightly 
larger than predicted by the von Neumann method for some cases; the critical wavelength 
and period are also affected: 

(i) P <  1. If N is odd, the most unstable mode has a wavelength of A/Ax = 2/(1- Ax) rather 
than 2, and, from (35b), 

m L 
Atc/AtvN = 

(1 + P”) + (1 - P’) cos T / N  

= 1 + (1 - P2)n-”/4N2, for N >> 1 (68b) 

where AtvN=Ax2/2K is the von Neumann result. If N is even, both At, and the most 
unstable wavelength agree with von Neumann. In both cases, the period and phase speed 
agree with von Neumann. 

(ii) P> 1. For this case, the critical At is, from (35c), 

2 
( ~ + C O S  ~ T / N ) + ( ~ - C O S  ~T/N)/P’ 

AtJAt,, = 

= 1 + (1 - l/P2).rr2/N2 for N >> 1 (69bj 

where AtvN = 2K/u2. Probably the most important difference is that the most unstable mode 
(at At,; from (27a) and (30)) actually has A, = N Ax = 1, the longest (finite) resolvable wave, 
rather than A,, -+ 00, with a period given by r/At,= NP (for N >> 1) rather than rvN + m. For 
finite N the precise result is 

(70) 
277 

1 
r/A t, = . r  2P sin 2 d N  

kP’- l)+(P’+ l)cos2n-/N1 
tan-’ 

For larger At, successively shorter waves (with shorter periods), become the most unstable. 

2.7. Numerical results 

We have numerically verified essentially all of the theory presented above for two cases 
and periodic boundary conditions: FTCS and modified FTCS. For example, we verified 
(FTCS) that the most unstable wave has A = 2Ax for P 5 1, whereas a long wave, given 
(approximately) by (62), grows fastest for P> 1. Critical At’s, growth rates and periods were 
also in accord with the theory. We appeal to the numerical results of S & G to show that the 
von Neumann theory is also quite useful for other boundary conditions. 
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Figure 9. Inital condition for all of the following Figures 

We will present results at the critical At(& = 0) and in the unstable regime (at E = 1) for 
FTCS and modified FTCS for P = 10, an advection-dominated situation. Again, At  is given 
by At  = (1 + E )  At,, where At,  is obtained either from the von Neumann results or those from 
the (periodic) matrix result. We take N =  50(Ax = 0.02) and u = 1, giving K = 0-001. At t = 0 
we place a Gaussian wave with (T = 0.1 = 5 A x  on the unit span (see Figure 9). For FTCS the 
von Neumann theory predicts At,  = 0.002 and for E = 1, h,lAx = 5.97, r / A t  = 36-15, and 
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Figure 10. ITCS solution for E = 0 at t = 10. the dashed line represents an analytic solution here and in all 
remaining Figures 
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Figure 11. Modified FTCS solution for E = 0 at t = 10 

Itrn 1 = 1.00504. The matrix theory (more precise in this case) yields Atc=0-002008, and for 
E = 1, Arn/Ax -6.25 (the eighth mode), r /At  = 37.07, and I&l= 1-00508. In addition, the first 
12 modes (wavelengths from 50Ax to 25/6Ax) are unstable and the last 38 are stable; the 
growth rates of modes 7 and 9 are within 0.038 and 0.005 per cent, respectively, of that for 
mode 8, so we may expect that many time steps will be required to clearly see mode 8. For 
modified FTCS, the von Neumann theory gives Atc-0.019 (cc= 0.951) and, of course, 
h,/Ax = rJAt = 2 for E >O.  Finally, from (67), the growth rate at E = 1 is I&,,l=6.62. 
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Figure 12. FTCS solution for E = 1 at t = 4 
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Figure 13. Same as Figure 12 except t = 8 

The results at neutral stability ( E  = 0) are shown at t = 10 (10 'round trips' via the periodic 
boundary conditions) in Figures 10 and 11 for FTCS and modified FTCS, respectively. (The 
infinite span exact solution is shown for comparison as dashed lines; it is a good approxima- 
tion to the periodic case as long as cp(x = 0, t = integer) << 1.) The improvement in accuracy 
resulting from the modified FTCS is quite striking (and at an almost 10-fold larger time 
step); unfortunately, equivalent accuracy is (probably) rarely attainable in 'real-world' 
simulations (variable velocities on variable grids in multi-dimensions, etc.). For FTCS, the 
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Figure 14. Same as Figure 12 except t - 20 
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Figure 15. Same as Figure 12 except t = 50 

longest wave (A = 50 Ax) is neutrally stable and its presence is detectable. For modified 
FTCS, however, the 2Ax wave is neutrally stable and, since its initial amplitude is small, it is 
virtually undetectable. 

The next series of Figures (12-16) shows the evolution of the unstable behaviour for FTCS 
at E = 1 (At = 0.004016). Although unstable behaviour is present at all times, the shape of 
the initial waveform causes the longer wavelengths to dominate at early time (their initial 
amplitude is larger). For instance, at t = 8, the fifth mode (rn = 5 )  seems dominant, rn = 7 at 
t = 20, with rn = 8 prevailing by t = 30, at which time the number of time steps is predictably 
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Figure 16. Same as Figure 12 except t = 100 
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Figure 17. Time history of central node (j = 25) for FTCS with E = 1 at t =: 50 

large, -7500. The overall evolution of the unstable behaviour is, as predicted by the theory, 
quite complex for FTCS. Figure 17 shows the time history of the central node (j = 25) near 
t=50 ,  showing a period of -37.2At. The observed growth rate, obtained by It\= 
[max (cp,)/max ( ( P ~ ) ] ~ ' ~ "  at times t ,  and t2, where An is the number of steps between tl and t2, 
is -1.0051 for t ,  = 50, t2= 100. 

For modified FTCS with E = 1, results are shown in Figures 18 and 19 at t = 1 and t = 4. 
The rapid growth of the 2Ax wave is rather obvious (and the period is Wt);  here the 
empirical growth rate, determined as above, is 1t1-6.56 between these two times, again in 
good agreement with the von Neumann prediction. 
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Figure 18. Modified FTCS solution for E = 1 at t = 1 
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Figure 19. Same as Figure 18 except t = 4 

3. MULTI-DIMENSIONAL CASES 

3.1. Von Neumann stability theorem 

dimensions, 
Here we are concerned with the constant coefficient advection-diffusion equation in M 

on the M-dimensional cube 0 5 x, 5 1, t 5 0, with K ,  non-negative. Although only M = 1, 2 
and 3 are of practical interest, the results are quite general, and in a sense even simpler to 
express and prove for general M. In the light of our results in 1-D, we will perform only a 
Fourier analysis of the corresponding difference equations, and in this analysis the boundary 
conditions are implicitly assumed to be periodic. Equivalently, we may take --co < x, < and 
address the purely initial value problem. 

Consider the discretization that is centred in space and forward Euler in time (FTCS): 

Here j represents a multi-index (jl, j2 ,  . . . , j M ) ,  A, is the central first difference operator with 
respect to the mth co-ordinate index j,, and Sf, is the central second difference operator 
with respect to j, (the obvious generalizations of the differencing in (3)). For each rn, we 
define diffusion parameters 

a, = 2K, AtlAxk (73) 

c,  = u, Atlhx, (74) 

Courant numbers, 
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and grid Peclet numbers, 

P, = u, Ax,/2K, = cm/am (75) 

Following the von Neumann (Fourier) analysis as in 1-D, we analyse the Fourier modes 

with arbitrary phase angles 0, = k, Ax,,,, - T S ~ ,  ST ,  where km is the component of the 
wave number vector, k, in the rn -direction. Implicitly invoking periodic boundary conditions, 
and initial conditions corresponding to the same Fourier mode, we substitute (76) into (72) 
and obtain 

m = l  m = l  

We define the difference scheme (72) to be stable if 15111 for all 0,. One of the main 
contributions of this paper is the following 

Theorem. The scheme (72) is stable (in the von Neumann sense) if and only if 

Remarks 

M 1 am51 
m = l  

and 

(i) These conditions obviously imply the Courant-Friedrich-Lewy conditions Ic, I 5 1, but 
the latter are by no means sufficient for stability. 

(ii) Inequality (79) is interpreted to imply that c : ~  am, even if a, = 0. This allows one to 
deduce the 1-D result from the theorem, for example. 

(iii) An equivalent form for (79) is C c,P, 1 1, and another is 1 P:a, 5 1. From the 
latter, we see that inequality (78) prevails (is more restrictive) when all P,<l ,  
whereas (79) prevails when all P, > 1. Otherwise, both (78) and (79) are required. 

Proof. We first write, from (77), 

Necessity 
We are given 1#5 1 for all choices of the vector 0 = (el, . . . , For the case of all 

e,, = T,  we have 2 

I#= (1-2 c a,) 51 

and this requires that (78) hold. For the limiting case 8, -+ 0 with (0,l 5 8 for all rn, we can 
write 

= I -  

= i - e T ( a - ~ ~ T ) e + 0 ( e 4 )  

where (Y = diag (a l ,  . . . , aM) and c = (cl, . . . , c ~ ) ~ .  Thus, in order to have 151” 5 1 for all 8, 
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the symmetric matrix 0 3 a - ccT must be non-negative definite (positive semi-definite). In 
particular, the diagonal elements a, - c i  must be non-negative. Thus ~ $ 5  a,, and if any 
a, =0, then that c, = O  and the mth dimension can be dropped from the problem. So we 
may assume that all a, >O. If we then set 

we have 

and the matrix 
p‘ = I- Y C C ~ Y  = I -  (YC)(YC)’= I-ddT 

where d= yc, must also be non-negative definite. From the associated quadratic form, 

z ~ P ‘ z  = Z ~ Z  - (dTZ)2 

we see that this is true if and only if d T d s l .  Since dTd=C ck/am, inequality (79) follows. 

Sufficiency 
Now assume (78) and (79). If all the a, >0, then the Cauchy-Schwartz inequality gives, 

for arbitrary 8, 

<C C, sin 8mm>25[C ( I C m I / J ~ m ) ( J a m  Isin 8rnI>]” 

I:[ 1 &larn][ C 0, sin2 Om] 

I: a, sin2 8, (81) 

If any a, = 0, then (79) implies c, = 0, and so (81) follows by summing first only over those 
rn for which a, >O.  Inserting (81) into (go), and denoting 1-cos 8, by z,, we have 

\ < l 2  s( 1- a m z m ) Z  + 1 a m D  -(I- Z,)~] 

a,z, + ( a,z,)2 + 1 a, (22, - 2 2) = 1 - 2 
= 1-c amz2,+(C a,z,)2 (82) 

Again using Cauchy-Schwartz, the last term in (82) is 

<C J a m  J a m  z m ) 2 s  (C a m ) (  C arnzk) 5 1 a m z ;  

using (78). It thus follows that 1((2s1. QED 

3.2. Applications to 2 - 0  

setting M =  2. In terms of the physical problem parameters, (78) is 
3.2.1. ETCS. The above Theorem applies directly to the FI’CS scheme in 2-D upon 

1 
2K,lAxT+ 2K21Axg 

A t 5  

and (79) is 

In (83), the shortest resolvable wave is the most unstable, whereas in (84) the longest 
resolvable wave is the most unstable. 
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3.2.2. Modified R C S .  The modified FTCS difference equations in 2-D are obtained by 
replacing each K, by 

= K, + u: At/2, m = 1,2 

or, equivalently, replacing a, by 

ti, = a!, + c:. 
(In multi-dimensions, as in 1-D, we retain the definitions of a, and P,,, in terms of the 
original K,.) The (von Neumann) stability conditions are now 

In general, inequality (85) has the form Q(At)<O, where Q is a quadratic which has real 
roots, one positive and one negative. Thus (85) is found to be equivalent to 

+- 
Ax? Ax: 

Inequality (86) leads to 

or 

or 

2 2  c,c2 I ff1ff2 

c1c25 1/P1P, 

At  5 At2 = 2J(K,K,)/ulu2 

If either u, = 0, inequality (86) holds trivially. We can state this as a corollary to the 
Theorem: 

Corollary 1 
The modified FTCS scheme in 2-D is stable if and only if 

and 
f f 1  +a2+ c:+ c;5 3 

c:c;Ia1a2 

or, equivalently, if and only if At s m i n  (At,, Atz), where At, and At, are given by (87) and 
(88). (For special cases with u, =0, use the limiting values of At, and At,). 

In contrast to the situation in 1-D, both inequalities (89) and (90) are needed as necessary 
and sufficient conditions for stability. To see this, we can insert At, into Q(At), and find 

Q(At2) = 4(u:/Ax:+ U;/AX;)K~K,/U:U; 
+4(KI/Ax:+K2 AX;) J ( K ~ K ~ ) / u ~ u ~ -  1 

= ( R ,  + 1/R, + R,+ 1/R2)/P,P2- 1 
where 
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Clearly Q(At2) can be made either positive or negative by various choices of the parameters, 
and so At, can be either larger or smaller than Atl.  However, in any case we have 
R, + l /R1 2 2  and R2+ 1/R2 2 2 ,  so that Q(At,> 24/P1P2- 1. So when PlP254, we have 
Q(At,) 2 0 ,  and inequality (90) follows from inequality (89). Thus we have 

Corollary 2 

or equivalently if and only if A t s A t ,  (given by (87)). 

Remarks 

If P1P2 54, the modified FTCS scheme in 2-D is stable if and only if a1 + a2 + cs + cg 5 1, 

(1) Unlike the l-D counterpart, the 2-D modified FTCS scheme cannot be stabilized if 

(2) Nevertheless, this scheme does display some stability advantages over FTCS. 

3.2.3. Upwinded advection. Consider the simplest upwind differencing in 2-D. For defin- 
iteness, suppse both u, 2 0 .  Then the corresponding difference equations are obtained by 
replacing K, by 

Kl = K2 = 0, as noted earlier by Leith.27 

- 
K, = K ,  + u, Ax,/2, m = 1,2  

or equivalently, replacing a, by 

&,=am+C, 

The (von Neumann) stability conditions now become 

and 

An equivalent form for this pair of inequalities is 

and 
a1(1+P1)+a2(l+P,)51 

a1Pf/(1 + P,) + a2P3( 1 + P2) 5 1 

But since P$/(1+ P,) < 1 + P,, the second inequality always follows from the first. Thus we 
have 

Corollary 3 
The fonvard-time upwinded-space difference scheme in 2-D is stable if and only if 

cY1(l+P1)+a,(l+P,)~l (91) 

or, equivalently, if and only if 

A t  I 1 / ( 2 K , J A x ~ +  2K21Ax?+ ul lAx,  + uzJAxz) (92)  

(1) If the difference scheme is properly modified for general u, (to remain upwinded), the 
above result can be expressed more generally by using lu,l in place of u, above. 

(2) Unlike modified FTCS, this scheme can be used for ‘pure’ advection (K, = O), 
requiring c1 + c2 5 1 for stability. The resulting numerical diffusion, however, is usually 
large enough to render the results highly inaccurate. 

Remarks 
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3.3. Application to 3-0 

3.3.1. FTCS. Application of the theorem to M = 3 is straightforward. Again we interpret 
(79) to imply c L ~ a , ,  and so the analogous 2-D theorem is a special case in which 
a, = c, = 0 for one value of rn. In terms of the physical problem parameters, these stability 
limits are given by the obvious extension of (83) and (84) to 3-D. 

3.3.2. Modified FTCS. the modified FTCS difference equations in 3-D are obtained, as in 
2-D, by replacing K,  by 

K, = K ,  + uk At/2, m = 1,2,3 

or by replacing a,,, by (Y, = a, + c i .  The stability conditions become 
3 c (am+c2,jl:l 
1 

and 

(93) 

As before, (93) has the form Q(At) 5 0 ,  where Q is a quadratic in At with one positive root, 
At,, given by the obvious extension of (87). 

Inequality (94), when cleared of fractions, reduces to 

or 

(There is no simple analogue of the 2-D constraint (88).) 
If no u, is zero, this has the form C ( A t ) s O ,  where C is a cubic polynomial, 

C(At)  = 2 A ( A t 3 +  B At2) - 1 (95) 

where 
3 3 

A = n u,,,Pm/Axm = (1/8) n uL/K, > 0 
1 1 

and 
3 3 

B = (112) Ax,/P,u,,, = K,/ui>O 

Since C(0) = -1 and C’(At)>O for At >0, C(At)  has a single positive root, say At2, and 
inequality (94) is equivalent to At <At2. If any one of the u, = 0, then (94) reduces to the 
analogous inequality, (88), in 2-D. The bound in that inequality is also the limiting value, as 
u, -+ 0, of the general Atz, from (95), and is the positive root of the quadratic to which 
C(At)  degenerates as u, -+ 0. If two of the u, = 0, (94) holds trivally, and we may use the 
limiting value At, = to. 

We can thus state 

Corollary 4 

1 1 

The modified FTCS scheme in 3-D is stable if and only if 
3 c ( a m + c 2 , ) 5 1  
1 
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and 
3 c c’,/(a, + c’,) 5 1 
1 

(97) 

or, equivalently, if At S m i n  (Atl, At2), where 

and At2 is the unique positive root of the cubic C(At)  in (95). (For special cases u, = 0, use 
the limiting values of At, and At,). 

Remark 
As in 2-D, pure advection (K, = 0) cannot be stabilized with this modified FTCS scheme. 

3.3.3. Upwinded aduection. As in 2-D, we consider only the simplest upwind differencing 
in 3-D. For definiteness, suppose each u, 2 0. Then the difference equations are obtained by 
replacing K ,  by 

or  equivalently by replacing each a, by dim = a, + c,. The stability conditions become 

K, = K,+u, AxJ2 ,  m = 1 , 2 , 3  

and 

3 3 1 Em =c (am+cm)51  
1 1 

3 3 c c$/Em = c c$/ (a ,  + c,) 5 1  

c am(l+Pm)51 

1 1 

An equivalent form for these is 
3 

1 

and 
3 

a,P2,/(1+Prn)I1 
1 

But since P’,/(l+ P,) < 1 + P,, the second inequality always follows from the first. Thus we 
have 

Corollary 5 
The forward-time upwinded-space difference scheme in 3-D is stable if and only if 

3 c a m ( l + P m ) s l  (98) 
1 

or, equivalently, 
3 3 

A t 5  1/(2 1 K, lAxk+ u,,,lAx,,,) 
1 

(99) 

The same remarks made for the corresponding 2-D case apply here. 

4. EXTENSION TO A FINITE-ELEMENT-BASED METHOD 

Having successfully analysed several multi-dimensional FTCS-related schemes which we do 
not use (nor recommend), we now briefly discuss a scheme which we use and advocate, both 
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for advection-diffusion and Navier-Stokes simulations. Our derivation of it is based on 
(lumped mass) finite elements (with multilinear basis functions) but this is not an absolute 
requirement (E.g., see Reference 28.). 

Using compass point notation (NE = north-east, etc.), the semi-discrete version of (1) in 2 
dimensions (for a full, but symmetric diffusivity tensor Kii) is described by the following 
9-point ‘stencil’ on a regular mesh (here cpo is located at the centre of the stencil): 

where y = 2, 4 or 00 for the cases of interest herein. The approximation using the Galerkin 
finite element method (GEM)  is that corresponding to y = 4. The case y = 2 corresponds to 
a modified GFEM wherein one-point quadrature is used to evaluate the Galerkin inte- 
g r a l ~ ~ , ’ ~  and is the case of most current interest to us. Finally, setting y to rn (and discarding 
the cross-diffusion terms) recovers the conventional finite difference stencil corresponding to 
FTCS . 

As in one dimension, a Taylor series analysis in time of the forward Euler time integration 
method for (1) can be performed to show4 that this scheme ‘reduces’ the effective diffusivity 
tensor from Kij to (Kii - uiuj At/2). Thus, as in one dimension, this observation leads directly 
to our improved scheme, which we claim is an appropriate multidimensional generalization of 
the one-dimensional modified FTCS scheme (or, for pure advection, an appropriate generali- 
zation of Leith’s method): namely replace Kii by Kii + %ui At/2 in (100). When this is done, 
the same sort of cost-effectiveness mentioned earlier for 1-D carries over to 2-D and 3-D; 
i.e. for advection-dominated flows, the time step limitation appears to be basically a ‘Courant 
(or CFL) condition’. 

Although the von Neumann stability analysis of the forward Euler time discretization of 
(loo), and its 3-D analogue, have thus far proved intractable in the general case, we do have 
partial (proved) results that are worth reporting (which we do without proof in view of their 
‘special case’ nature): 

1. For 2 1 7 5 6 ,  u = O  (pure diffusion), and Kii = O  for i # j  (no cross-diffusion), the 
necessary and sufficient stability conditions in M spatial dimensions are 

a,,,sl,  m = l , 2  , . . . ,  M (101) 

This scheme is thus more stable than FTCS which requires 1 a, < 1. Also for this pure 
diffusion case and y > 6, the necessary and sufficient stability conditions are slightly more 
complicated than (101). 

2. For y = 2 and pure advection (with Kii = %ui At/2), the necessary and sufficient stability 
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condition is 

c“ c:11 
m = l  

(This is also a necessary condition for any value of y.) 

condition is 
3. For y = and pure advection (with Kij = &ui At/2), the necessary and sufficient stability 

M 

C c:3~1 
m = l  

This scheme (in 2-D only) is a familiar Lax-Wendroff method;30 (Lax and Wendroff proved 
only the sufficient conditions cm 5 1/J8). The unique feature of the y = 00 scheme is that the 
stencil is the simplest one possible that gives centred, second-order spatial difference 
approximations. 

4. For y = 2 we have the following necessary conditions for stability in 2-D. 
(i) The l-D requirements, (9)-(11)’ apply separately in each direction. 
(ii) At 5 (1 - K : , I K ~ ~ K ~ ~ ) I ( u T / ~ K ~ ~  + ~$/2K22- ~1~2Ki2IKiiK22) (104) 

where K:2<KllK22 is required in order that the problem be well-posed (even in the 
continuum). 

5.  If we replace Kii by Kii + 4% At/2 (the recommended scheme), the above necessary 
conditions (in 4) are changed to those in which the l-D results of modified FTCS, (59), apply 
separately in each direction. (104) is always satisfied in this case, since it degenerates to 
K:2 < KllK22. 

Further remarks 

This ‘balancing tensor diffusivity’ method (Kij -+ Kii + z q +  At/2) is not new. It has been 
previously discussed and applied to the solution of the incompressible Navier-Stokes 
equations by Dukowicz and R a m ~ h a w , ~ ~  albeit with a somewhat different spatial 
discretization. (Recall that our derivation suggests that its utility is essentially inde- 
pendent of spatial discretization .) 
Unlike modified FTCS, discussed in Section 3, the balancing tensor diffisivity method 
can easily be stabilized when Kii = 0 (as discussed above). This is the reason we call it 
an appropriate generalization of Leith’s method. 
The 3-D version of (100) is, for y =2 ,  obtainable via a tensor product of the 
‘averaging coefficients’ (1/4, 1/2, 1/4), just like the 2-D version, and leads to a 
27-point stencil. 
Since the derivation of this scheme is based on the time-dependent equations, the full 
utility of it is also limited to transient simulations. If a steady state is approached, the 
balancing tensor diffusivity method leads to a streamline upwinding of the advection 
terms; i.e. there is additional artificial (numerical) diffusivity in the streamline direc- 
tion (but, importantly, not in the ‘crosswind direction’, which has been found to be 
quite d e l e t e r i ~ u s ~ ~  and present in large measure if upwinded advection is employed in 
the manner adopted in Sections 3.2.3 and 3.3.3). See also Reference 4 for additional 
steady-state analysis and numerical results. 

To conclude this section, we compare the relative cost of three of the schemes discussed in 
this paper-at least when they are used for pure advection (Kii = 0) simulations (the only 
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Table I 

Scheme tan 0, At,, 

1 
IuI Cj l/Ax; 

1/2 

UAxi 1 
(xi l/Ax;)”* 1u( (c, llAx;)1’2 

2 

1 
3 See footnote* - mjn (Ax,) 

*The critical direction for Scheme 3 is that with 
min (Ax;). 

I4 ’ 

case for which we have complete results): 
Scheme 1 is the Lax-Wendroff method, discussed above. 
Scheme 2 is the upwind method as derived from FTCS by replacing Ki by 4 Axi/2 (u, 2 0). 
Scheme 3 is (see reference 4) that of (100) with Ki, replaced by uiuj At/2 and setting 

From the necessary and sufficient conditions for stability of these schemes ((103) for 
Scheme 1. 

y = 2 (as discussed above). 

m = l  

for Scheme 2 (see Section 3), and (102) for Scheme 3), we can answer the following 
legitimate questions related to the cost of each scheme: (1) Is there a particular direction of 
the velocity vector that results in the smallest allowable time step? (2) If so, what is this 
direction and what is the minimum At? the answer to question (1) is yes (except for Scheme 
3 in the case where Ax, is the same in all spatial directions) and that to question (2) is given 
in Table I, wherein tan 0, = UJlul and 0, define the critical direction for u. 

Remarks 
(i) h t , s A t , s A t , ,  where Ati denotes At,, for Scheme i. The stability differences in At 

are largest for a uniform grid (Axi = constant), wherein At, = At,/M and At, = A~,/JM 
where At, = Ax/lul. 

(ii) The direction of the wave number vector for which the At  bound is minimal turns out 
to be the same Bi as above. 

(iii) This measure of relative cost should not be confused with cost-effectiveness, which 
necessarily raises issues that are beyond the scope of this paper. 

5.  CONCLUSIONS 

The von Neumann method is generally the best single technique for analysing the 
stability of difference schemes. It should always be part of a stability analysis, even if 
other techniques are also employed. 
The von Neumann stability results are necessary conditions regardless of boundary 
conditions. For periodic boundary conditions, they are also sufficient (cf. also 
Reference 11.) For other boundary conditions, the von Neumann results augmented 
by those from a Godunov-Ryabenkii type of analysis will yield the necessary and 
sufficient stability conditions. 
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(iii) When stability results from the matrix method are less strict than those from the von 
Neumann method, they should not be relied upon since errors could become very 
large before finally decaying to zero. Typically in these cases, instability begins far 
from boundaries and it may require a long time before the boundary conditions can 
finally 'stabilize' the numerical solution. 

(iv) For advection-dominated flows, Robin boundary conditions should not be im- 
plemented using the image point method of finite differences. 

(v) The behavioural transition of ETCS in l-D as P passes through unity (from below) is 
quite marked: the discrete spectrum changes from real to complex, and the inequal- 
ity describing stability (von Neumann sense) completely changes its form, as does the 
behaviour of the most unstable mode. Only for P < 1 does the discrete spectrum 
resemble that of the continuum. 

(vi) Correct stability results have been obtained in 2-D and 3-D for FTCS and two 
variants of it. For FTCS the necessary and sufficient conditions for stability are: 

and 

where M = 1,2 or 3 is the spatial dimensionality. 
(vii) Balancing tensor diffusivity (modified FTCS in 1-D) appears to be as useful for 

advection-diffusion as it is for the limiting case of pure advection, in which limit it is 
an appropriate multi-dimensional generalization of k i th ' s  (or the Lax-Wendroff) 
method. It has also proved useful for solving the Navier-Stokes equations. 
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APPENDIX. MATRIX POWER BOUNDS FOR l-D FTCS 

In Section 2.4, results are given concerning powers of the N X N  matrix 

E = [  :;\I 
The derivations of those results are given here. 

We define, for 0 5 a < 2, 
mN(a, n) = I(E">ijl 

1.1 

and 
M N ( a )  = max mN(a, n )  

n z l  
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If we define L to be the matrix with 1 on the first subdiagonal and 0 elsewhere, we have 
E = ( l - a ) I + a L  and so 

E" = 2 (;f)ak(l-a)"-kLk 
k =O 

where (3 denotes a binomial coefficient. We note that Lk has 1 on the kth subdiagonal, in 

positions (i, j )  = ( j  + k ,  j ) ,  if k s N -  1, and 0 elsewhere, and that LN = 0. Thus the upper limit 
in the sum above should really be min(n,N-1). It follows that the magnitudes of the 
non-zero elements in E" are 

e k ( a ,  n> = ( ; )ak( .  - I)"-', 0 5 k S m i n  (n, N -  1) 

One easy observation is that for 0 5 a I 1, the elements of E" are all non-negative, and 
the sum over any row or any column is bounded by 

Thus both MN(a)  and (IB"I(, are bounded by 1 when a 5 1. 
For 1 < a < 2, we can obtain good estimates with the help of Stirling's formula, in the form 

1<m!/[m"le-~J(2.rrm)]<12/11 

for m z l .  From this we find that for n 2 2  and l s k s n - 1  

is bounded below by (11/12)'/J(27~)>0-335, and above by (12/11)/J(27~)<0.436. We also 
have 

J[n/ k ( n  - k ) ]  5 J[n/(n - l)] 5 J2 
Thus if we define 

fn(k) = n"(a/k)"[(a - l)/(n - k) ]n -k ,  0 < k < n 

we have 

0.335 f,(k)J[n/k(n- k)]<ek(a, n)<0-62fn(k) 

for n 2 2 and 15 k 5 n - 1. We will need to check separately the cases 

e,(n, a )  = (a  - 1)" < 1 

e,(n, a)an, when n s N -  1 
mpJ(a, 1) = ff 

Upper bounds 

We need to study f,,(k), and for this we regard k as a continuous real variable. We have 

log f,, = n log n + k log ( a l k )  + ( n  - k )  log [(a - l)/(n - k ) ]  
fyf, =log(a/k)- l - log[ (a- l ) / (n-k)]+l=log[a(n-k) /k(a- l ) ]  
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The last expression (in brackets) decreases monotonically on 0 < k < n, and so f,!,(k) has a 
single zero at k = k* given by 

a(n  - k*) = k*(a - 1) 
or 

k* = an/(2a - 1) 

Note that (2/3)n < k* < n for 1 < a  < 2. From the relations 

a/k* = (a - l) /(n - k") = (2a - l ) /n  

we see that fn(k) has a unique maximum on 0 < k < n of 

fn(k*) n"[(2a - l) /nl" = (2a - 1)" 

This value of f,, is relevant only if k* IN - 1, which is equivalent to 

~1 S P = ( 2 - l / a ) ( N - l )  

Note that N" > N- 1 2 1. the information obtained so far can be collected as follows: 

Case 1. n = 1. Here mN(a, n) = a. 

Case 2. 2 5  n s N *  and n 5 N- 1. Here the relevant values of k are 0, . . . , n. We have 

eo(n, a) = (a - 1)" < 1 
en(n, a) =an 

and for l l k - c n - 1 ,  

Thus 
ek(n, (u) <Om62 fn(k) 50.62 f,(k*) = 0.62(2a - 1)" 

mN(a, n ) l m a x  [a", 0*62(2a - l)"]lmax [aN*, 0*62(2a- 1)"*] 

Case 3. 2 s n s N "  and n > N - 1 .  Here only k s N - 1  is relevant, and for 1 s k r N - 1  
we have 

Also eo(n, a) = (a - 1)"; but from 

ek(n, a) (0.62 fn(k*) = 0 * 6 2 ( 2 ~ ~  - 1)" 

(2a - 1)/(a - 1) = 2 + l / ( a  - 1) > 3 

we conclude that 0.62(2a - 1)" >(a - 1)" for all n 2 2. Thus 

mN(a, n )  < 0*62(2a - 1)" I 0.62(2a - l)N* 

Case 4. n > N*. Here n > N* > N- 1, k* > N- 1, and fn(k) is monotone increasing on 
O < k s N - l .  Thus e o ( a , n ) < l  and for 1 5 k s N - 1 ,  

ek(a, n)  <0.62 f n ( k )  10.62 fn(N- 1) 
mN(a, n)<max[l, 0.62fn(N-1)] 

We now must study the function 

g(n)=f,,(N- 1 )=  n"[a/(N- 1)]"-'[(.: - l ) / (n-N+ 1)InPN+' 

where n will be regarded as continuous and greater than N- 1. We have 

and 
log g = n  log n+(N-l)log[~/(N-1)]+(n-N+l)log[(~-l)/(n-N+1)] 

g' lg =log yt + 1 +log [(a - l)/(n -N+ 1)]- 1 =log [n(a - l) /(n - N +  l)]  
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The last expression (in brackets) is monotone decreasing as n increases, and g' has a single 
zero at n = n* given by 

n*(a-I)= n * - N + I ,  or  n*=(N-1)/(2-a)  

Note that n*>N- 1. Thus g(n)  has a unique maximum on n > N - l  of 

g(n*) = (n*)"*[a/(N- l)]N-l(l/n*)n*-N'l = [an*/(N - 1)IN-' = [ 4 ( 2  - CX)]"-' 

To compare (2a - 1)"* with g(n*) we must examine 

a(a )  = (2a - l ) ( ' - l 'Orf and b ( a )  = a/(2- a )  

We have a(1) = b(1) = 1, and 

a'/a = [(2 - I / a )  log (2a - I)]' = a-' log (2a - 1) + 2/a 
c(a)  = a2a'/a = log (2a - 1) + 2a 

b'/b = l/a - 1/(2 - a )  = 2/[a(2- a)]  

d(a)=a'b ' /b  = 2 a / ( 2 - ( ~ )  
and 

Next, observe that c(1) = d ( 1 )  = 2, and for a > 1 

and 
c'(a) = 2/(2a - 1) + 2 < c'(1) = 4 

d ' ( a )  = 4/(2 - a)2 > d'(1) = 4 

Thus for 1 <a < 2, we have d' > c', d > c, log b >log a, and b > a. It follows that 

= [a/(2 - a)]"-' > aN--l = (2a - 1)N* 

Now M N ( a )  is the maximum of the mN(a, n )  as n goes through the four cases above. 
Using the last of the above inequalities, together with aN* > a and fn(N- 1) 5 g(n*) ,  we find 

M N ( a )  s m a x  {aN*, 0*62[a/(2- 

A simpler bound results from increasing the 0.62 to 1 and using 

namely, 
aN* <(2a - 1)"* <[a(2- a)]N-l 

MN(a) <[a//(2-a)lN-' 

The value of this bound arose as a bound on ~ , ( c x ,  n )  with n = n*, and for this value of n it 
arose as the bound on the lower left corner element of En, i.e. eN-l(a, n).  

Lower bounds 

In an attempt to get a lower bound on MN(a),  we restrict our attention to the particular 
ek(a ,  n)  which gave rise to the upper bound, namely the corner element eN-l(a,  n )  with n at 
or  near n*. To use the lower bound on this element obtained earlier, we must keep 
N - l s n - 1 ,  or n z N r 2 .  Thus we can write 



EXPLICIT EULER TIME-INTEGRATION 895 

and g(n) is as before. From this information, the best available lower bound would be the 
result of finding the maximum of h(n)  over n s N .  This problem appears intractable 
however, and we will settle for the value h(n*), on the grounds that h(n)  and g ( n )  differ 
relatively little, and the maximum of g(n) is at n = n* = (N- 1)/(2-a). We must ensure that 
n* 2 N, by requiring that N r  l/(a - 1). Note that 

h(n*) = g(n*)/J[(2-a)(n* -N+ I)] = [a/(2-a)lN-l/4(a - I)(N- I)] 
If n* were an integer, we could take 0.335 h(n*) itself as a lower bound on M N ( a ) .  In 

general, however, we will take 0-335 h(n)  with the integer n = [n*]+ 1. (Here [XI denotes 
the greatest integer less than or  equal to x.) To account for this small shift in argument, we 
must analyze h(n)  in the interval n* I n I n* + 1. We have 

and 

For n* 5 n I n* + 1, we have 

log h=log  g+(1/2)logn-(1/2)log[(N-l)(n-N+1)1 

h'/h = log [ n [ a  - l)/(n - N+ l)] + 1/2n - 1/[2(n - N+ l)] 

~1/2n-1/[2(n-N+1)]~=(N-1)/[2n(n-N+1)]~1/[2(n*-N+1)] 
and the argument of the log in h'/h satisfies 

In(a - l) /(n -N+ 1)- I I =  I[n(a -2)+(N- 1)1/(n -N+ 1)l 

= l(n - n*)(a -2))/(n -N+  1) ((2- a) / (n  -N+ 1) 

5 (2 - a)/(n* - N+ 1) 
Note that 

So if we define 
l/(n*-N+1)=(2-a)/[(a-l)(N-l)] 

and 
d2(a )  = (2 - C X ) ~ / ( C X  - 1) 

we have, for n* I n I n* + 1 and N? l/(a - 1) 

with 

Thus in this interval, 

h ' / h = h , + l o g ( l + h J  

(hlJ  5 d,/(N- l), lh2lS d2/(N- 1) 

h'(n)/h(n)r-d,l(N- l)+log[1-d2/(N-1)1 

Now fix n = [n*]+ 1 and integrate the above inequality from n* to n, to get 

log[h(n)/h(n*)]r -d1/(N-l)+lOg(l-dJ(N-l)) 
or 

h(n)/h(n*)r[l-d,/(N- 111 exp [ - M N -  1>1 
> [l- dJ(N- 1)][1- d,/(N- 1)]> 1 - (d1+ d J / ( N -  1) 

Define 
d ( a )  = d1+ d2 = (2- a) (5  - 2a)/[2(a - l)] 

Then for N z  l/(a - 1) and N- 1 r d ( a ) ,  we have 

h(n)  > [ l -  d(a)/(N- l)lh(n*) 

for the integer n = [n*]+ 1. The minimum allowed value of N here is the larger of l/(a - 1) 
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and 

1 + d ( a )  = ( a - 7 a/2 + 4)/(a - 1) 

The quadratic a2 - 7 4 2  + 4 has its maximum in 1 I a 5 2 at a = 1, namely 312. Thus it suffices 
to restrict N to 

N r  1.5/((~ - 1) 

For any such N, we have shown that for 1 < a < 2, 

with d ( a )  = (2- a)(5/2 - a)/(a - 1). 

growing) expression 

which serves as the upper bound. To illustrate this numerically, for a = 1.5 and N = 50, note 
that the upper bound is 349 = 2.4 x 

Clearly, for large N, the factor which dominates this lower bound is the (exponentially 

[a/( 2 - a ) ] N - l  

whereas the lower bound is = 1.6 x lo2’. 
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